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Abstract

The encoder-decoder framework is widely adopted in im-
age captioning where the encoder generates image features
and the decoder receives the image features and generates
captions. However, this framework has insufficient capa-
bility to reduce the gap between image and text represen-
tations, thus leading to poor generation results. One solu-
tion is to embed the two modalities in the same space such
that the representation of an image region (e.g., a person)
is close to the representation of a corresponding word (e.g.,
“person”) in that space. To achieve this goal, we propose
to add a constraint to the encoder-decoder framework such
that the image features can be transformed to the text em-
bedding space and represent the captions. By minimizing an
auxiliary loss function which encourages the transformed
image representation to be close to the caption representa-
tion, we explicitly bridge the gap between two modalities.
The decoder learns this image-to-text transformation and
generates better captions for given images. Experiments on
the MSCOCO captioning dataset demonstrate the effective-
ness of the proposed method.

1. Introduction

Image captioning is one of the core tasks in artificial in-
telligence, which requires the machine to understand what
it sees and describe the contents with natural language. In
recent year, it has received massive attention from the com-
munities of both computer vision and natural language pro-
cessing. Benefiting from the development of large-scale
datasets [S) [16, 21]] and the popularity of deep learning
[27, 26|, automatic caption generation has been largely im-
proved from the perspectives of syntax and semantics.

The encoder-decoder framework was originally pro-
posed for machine translation [4] and showed great poten-
tial in image captioning [26] later. When adapted to image

captioning, the encoder takes images as inputs and gener-
ates features which are forwarded to the decoder to generate
the captions (Fig. [Th). The image features usually contain
the representations of objects, attributes, relationships, etc.
To fulfill this task, this framework should have two capa-
bilities. First, it should be able to bridge the gap between
image and text representations since the decoder takes im-
age features as input and generates sentences. In order to
obtain good results, the image representation and text rep-
resentation must have close relationship. For example, ide-
ally, an image region containing a person should be closely
related to the words “person” and “human” based on their
representations. To obtain image features, one successful
practice is to use the Faster R-CNN [22] pretrained on the
Visual Genome dataset [16] as the image encoder, and fix it
in subsequent training [2]. In this case, the decoder alone is
responsible for learning the transformation from image rep-
resentation to text representation. Second, given the trans-
formed image features, the framework, actually the decoder,
should be able to organize the knowledge into semantically
and syntactically correct sentences. An interesting question
arises: if we want to further enhance of the performance of
this framework, which capability should we emphasize on?

We empirically find that, when there is no modality
difference between the encoder and decoder, an autoen-
coder architecture (Fig. [Ib) has excellent ability to recon-
struct the input sentence. Taking the captions as inputs, the
autoencoder architecture learns to generate the same sen-
tences as inputs. As shown in Table |1} the Transformer-
based text encoder combined with different decoders can
obtain the CIDEr-D values higher than 200. In contrast,
a recently published image captioning model obtains only
128.0 CIDEr-D [18]] (last row of the table; see Section [5.3]
for results of more image captioning models). CIDEr-D
[25] is a metric to measure the quality of the generated
sentence. The higher, the better. These results imply that
the decoder has strong capability to organize semantically
and syntactically correct sentences. Then the gap of perfor-
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Figure 1: Illustration of the motivation. (a) The standard
encoder-decoder framework for image captioning. Every
blue bar denotes an image feature for an image region. (b)
An autoencoder for text reconstruction. Every orange bar
denotes a word representation. (c) The proposed encoder-
decoder framework for image captioning. The key compo-
nent is the module for transforming the image features to
text features.

Encoder Decoder BLEU-4 CIDEr-D SPICE
T-T(2) Att2in 96.2 259.9 41.1
T-T(2) Up-Down 93.4 249.6 39.6
T-T(6) T-D 98.4 266.9 42.2
T-1 T-D 39.0 128.0 22.5

Table 1: Comparison of the caption reconstruction results
and image captioning results. In the encoder, T-T(n) rep-
resents the text encoder stacking n Transformer’s encoder
layers. T-I represents the image encoder with Transformer.
The decoders are taken from the Att2in [27]], Up-Down [2]
and Transformer [24] (denoted by T-D), respectively. The
first block shows the caption reconstruction results. The
second block shows the results of a typical image caption-
ing model, which differs from the third model only in the
encoder. See Section@for details.

mances between image captioning and caption reconstruc-
tion may be caused by the weak capability of the decoder to
bridge the gap between the image and text representations.

The text features from the caption reconstruction are
good guidance for generating text-aware image representa-
tions, since they almost encode all the information needed

for caption generation. One naive method is to learn a
transformation from the image feature space to the text fea-
ture space, so that the image features can be directly trans-
formed to the text feature space. Denote a image feature by
vy € R% (a feature vector extracted in an image region) and
a text feature (an word embedding) by vy € R?. Define a
transformation f : R4 — R ie. f(vr;0) = vy, where 0
denotes the parameters. This goal is hard to achieve, since
the image regions and words are not one-to-one matched.
We propose to align the image features to the correspond-
ing text features and minimize the distance between aligned
image features and text features. When forwarding the im-
age features to the decoder, the transformation from image
features to text features can be easily captured by the de-
coder.

The proposed approach is shown in Fig. [Ik. It differs
from the conventional encoder-decoder framework only in
the training phase by adding an Image-to-Text Transforma-
tion (ITT) module. It is desired that by modifying the image
features such that the difference between the transformed
image features and text features is minimized. To achieve
this goal, it is important that the transformation function
should involve few extra parameters, preferably no extra pa-
rameters except the image features, because otherwise the
extra parameters may account for the minimization of the
distance but the image features change little. We propose to
project the image features to the text feature space by mul-
tiplying a similarity matrix between image region features
and word features. This similarity matrix does not intro-
duce extra parameters, and its function is to align the image
features to the text features. By minimizing the distance be-
tween the transformed image features and text features, this
alignment can be achieved.

It is seen that the image and text alignment is not super-
vised explicitly because the image captioning datasets do
not provide such alignment annotations. To further enhance
the alignment learning, a partial-order restricted training
strategy based on the fuzzy set theory [31] is proposed to
self-supervise the training process.

We conduct experiments on the Karpathy’s split [[14]] of
MSCOCO dataset [3]. It is shown that the proposed ITT
module and partial-order restriction technique can signifi-
cantly boost the performances of several baseline models.

2. Related Work

Image Captioning Image captioning has been largely im-
proved by the encoder-decoder framework [26] and atten-
tion mechanism [27] these years. Since the image repre-
sentation as well as the image encoder is an important part
in those models, lots of efforts have been made to gener-
ate informative image features. We summarize these im-
provements into two categories. One category is to learn
from external knowledge [2, [28]]. For example, NIC [26]



uses CNN models pretrained on ImageNet [3]] as the image
feature extractors. Up-Down model [2] first adopts Faster
R-CNN [22] pretrained on the Visual Genome dataset [16]
to extract the image features which enables to learn the at-
tention on objects and salient regions. GCN-LSTM [29]
goes one step further. It uses GCN to encode the semantic
and spatial relationships between detected regions. SGAE
[28]] uses scene graphs to structure the image representa-
tion. Some other works [32, [7] guide the sentence gener-
ation explicitly by detected objects, attributes and relation-
ships. The other category is to explore the image captioning
datasets, for example, finetuning the image encoder on im-
age captioning datasets [[1 1] and exploring the relationships
in image-caption pairs to introduce language inductive bias
into features [28]]. Our model belongs to the second cate-
gory. Different from SGAE [28], our model do not intro-
duce extra modules in inference phase, since we expect the
image encoder obtaining the capability to bridge the gap be-
tween modalities instead of an extra memory module. Be-
sides, we do not use external structural knowledge, such as
scene graphs, to learn the relationships between image and
text representations. The proposed method learns the rela-
tionships in self-supervised manner without external knowl-
edge.

Vision-Language Embedding Tasks involved vision-
language embedding, such as visual-semantic embedding
[9, 115018, [12]] and visual grounding [30, 10} 20], requires to
generate shared feature space where paired images and texts
are supposed to closer than those unpaired. Earlier works
[19, 18] on visual-semantic embedding encodes the each im-
age and sentence into single feature vector, which rarely
keep the fine-grained knowledge. Recent years, some works
[L5L[12] turn to explore the fine-grained alignment. In image
captioning, however, image representations are supposed
to cover more details which are not necessary for visual-
semantic embedding. Compared to visual-semantic embed-
ding, in visual grounding, models need to align between
concepts and image regions. However, the alignment can be
trained under supervision in visual grounding [30, 10, 20].
In image captioning, we hardly get the explicit alignment
between words and image regions.

3. Image-to-Text Transformation

The ITT module projects the image features to text fea-
tures and learns to cluster the words and image regions with
the similar meaning. Unlike coarse-grained alignment in
image or text retrieval, the ITT module learns to align im-
age regions and words instead of images and sentences. To
alleviate the misalignment under weak supervision, we pro-
pose partial-order restriction technique which applies latent
property of features to supervise the training.

3.1. Image-to-Text Transformation Module

The ITT module takes the text feature Vp and image
feature V7 as inputs. In order to keep the semantic de-
tails, the text feature is represented as the features of m
words in the sentence and the image feature is presented
as the features of n image regions. Mathematically, Vr =
[vh, 02, ... oM T € R™%¢ where vl € RC is the rep-
resentation of the i-th word and V; = [vi,v%,..., 07T €
R™*¢ where v} € R¢is the representation of the j-th image
region. ‘

Note that v and v} with similar meanings are expected
to be clustered in the joint embedding space. However, the
image regions and words are unpaired, so that the match
between v and v} is unavailable. Thus we need to first
project the image feature to the text feature to get the paired
features. This is achieved by multi-head scaled dot attention
[24]. The attention matrix W;_,p = {w}_, 1 }:mxn between
image regions and words is computed by the similarity be-
tween V; and Vr, in which w}’ . is the attention weight
between the word feature v, and the feature of image re-

gion v}. Mathematically,

1%z
Wi s = softmax( ffl ). (1)
c
The softmax function is computed along the sec-
ond dimension (n) to regularize among image regions.
Next we compute the aligned image feature Vi_,p =
]T according to the attention ma-
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Note that the i-row of V;_,7 corresponds to a transformed
“word” from n image features. It is a weighted sum of n
image features, where the weight W7, .(j = 1,...,n) is
higher if the j-th image feature is more similar to V.

To cluster the words and image regions with similar
meanings, the ITT module is trained to minimize the co-
sine distance between the aligned image feature V;_,7 and
the text feature V7, which follows the common practice in
word embedding:

m i T i
Lossqis = Y TR-IDF(1 — L1211 - (3)

2 T Mvre]

Lossg;s is the summation of the weighted cosine distance
between all v} and v¢_ ;..

Note that words do not have equal importance in pro-
viding knowledge. For instance, nouns like “woman” and
adjectives like “red” are more important than prepositions
like “of” and articles like “the”. Therefore, the TF-IDF of
the ¢-th word, represented as TF-IDF;, is used to weight the
distance, and can be regarded as an approximation of the
importance of each word.



3.2. Partial-Order Restricted Training

Explicit alignment between words and image regions is
hardly provided in large-scale datasets because of high cost
for annotating. It means that there is no explicit supervi-
sion on computing the matrix Wy_,7. The loss in (3) only
provides weak supervision. Here a self-supervised train-
ing method, named partial-order restricted training (POR),
is introduced to reinforce the relationship between image
regions and words.

We first give the definition of the fuzzy set [31]. The
fuzzy set A is defined as a pair of a set U and a membership
function p, i.e. A = (U, ). The membership function g :
U — [0, 1] associates with each point in U a real number
interval of [0, 1], with the value of p(z) representing the
“grade of membership” of = in A.

In this case, the fuzzy set A; = (U, p;) is defined to rep-
resents the assessment of image regions matching the ¢-th
word, i.e. the similarity. U = {1,2,...,n} is the indexes of
image regions. p; : U — [0, 1] is the membership function
that assesses the matching degree between image regions
and the i-th word. Randomly sampling Q C {1,2,...,m},
the inequality should hold:

A< A )

i€Q i€Q

In our case, we define p;(j) = w}gT which is the similarity
between i-th word and j-th image region. The membership

function of fuzzy set [ A4; is
i€Q

Ho(7) = maxwy g 5)

1€Q

For the right side of @), we define in another way. Given
the set €2, the joint feature vector of {2 is defined as

1 .
Q [
Up = @ E V. (6)

1€Q

Then the similarity between image regions and the word set
is computed with (T). That is

QyT
\%
Wiq = softmax(vTil), (7)

NG

where wr_,q = {w} _,o}n- Thus, the membership function
of U A;is
1€Q
o) = wi_q. (8)
Deriving from @) we have

ij j ;
ax Wr—r > wr_q, V] ©
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Figure 2: The overall model has four modules, the image
encoder, text encoder, Image-to-Text Transformation mod-
ule and decoder.

To keep the partial-order relation in (9)), a loss is intro-
duced as follows:
N n B ]
Losspor = Z Z min (0, & — max wi,p+wi_g, )
k=1 j=1
(10)
where £ is the margin. For each training sample, we ran-
domly sample €2 for N times, named Q, k= 1,2,..., N.
The overall loss function for the ITT module is

LosSemped = L0Ssg;s + Losspor. (11
4. Overall Model

The overall model (Fig. [2) consists of four modules: (1)
Image encoder encodes the image regions into image fea-
ture vectors. (2) Text encoder encodes the words into text
feature vectors. (3) ITT module projects the image features
into the features space of text representations. (4) Decoder
generates the sentences.

Text Encoder The encoder in Transformer [24] is
adopted as our text encoder which results in almost per-
fect reconstruction performance. Inputting the sentence
with length m, the text encoder generates the text fea-
ture Vp = [vh,vZ, ..., 0] T, which provides separate but
context-aware feature vector for each word.

Image Encoder The architecture of the image encoder
can be arbitrary image encoders proposed before. How-
ever, some image encoders which are pretrained from other
datasets and fix when extracting image features on image
captioning datasets, such as Up-Down model [2]] and Att2in
model [27] needs to add extra layers. In this way, the im-
age encoder can be refined when training together with the
ITT module. To stay the same with the text encoder, the en-
coder modules in Transformer are adopted to build the extra
layers. The final image feature is V; = [vi,v%, ..., 07"
which provides a single feature vector for each image re-
gion.

>



ITT Module The ITT module takes the image features
and text features as inputs. Since the ITT module is trained
together with the image encoder, it could back propagate to
the image encoder and thus refines the image encoder.

Decoder Both the image features and text features could
be the inputs of the decoder. When training the caption con-
struction (Fig. ), we forward the text features to decoder.
When switching to image captioning, the decoder takes the
image features as input while the text features are only used
to refine the image features through the ITT module.

Training We adopt a three-stage training process. At the
first stage, the caption reconstruction is trained to obtain the
text representations. In this stage, the text encoder and de-
coder (dotted path in Fig. [2) is involved in the training. The
training loss for caption reconstruction is the cross-entropy
(XE) loss, which is

m

Lossrecon = _Zp(wi‘wlaw%"' 7wi—1;9)~ (12)
i=1

After finishing the text reconstruction stage, we fix the pa-
rameters in the text encoder.

At the second stage, the model is optimized by minimiz-
ing the cross-entropy loss for caption generation. Mean-
while, the ITT module is also trained with @]} In this
stage, the image encoder, ITT module and decoder are in-
volved in training. The loss for this stage is the summation
of cross-entropy loss and LosSempeq for ITT module:

Losscaption = - Zp(wz|w1a Wz, , Wi—1; 0)
i1 (13)

+ aLossembed,

where « is a hyperparameter to weight the item.

At this last stage, we adopt Self-critical Sequence Train-
ing (SCST) [23]] to optimize towards the evalutaion metrics
such as CIDEr-D [23]. Only the image encoder and decoder
are involved in this stage.

Inference Since the captions are not provided in inference
and the image encoder are assumed to learn the language in-
ductive bias, we simply use the image encoder and decoder
to generate the captions.

5. Experiments

5.1. Datasets and Evaluation Metrics

The proposed methods are validated on MSCOCO cap-
tioning dataset [3]. Each image is captioned with 5 sen-
tences. The Karpathy’s split from [14] is used, which have
113287 image in the training set, 5000 in the validation set

and 5000 in the test set. The experimental results are re-
ported on the test set of the Karpathy’s split and evaluated
on BLEU [19]], METEOR [6], ROUGE-L [17], CIDEr-D
[25] and SPICE [1]].

5.2. Implementation Details

To prepare the annotations, we first tokenize the words
in captions and replace those occurring less than 5 times
with UNK. The vocabulary contains 9487 words. The max-
imum length of captions is set to 16. For those exceeds the
maximum length, we simply truncate the sentences.

Transformer We use primary image features extracted
from Faster R-CNN [22] which is pretrained on the Visual
Genome dataset [16], as presented in [2]. In the image
encoder, the primary image features are first projected to
lower-dimensional space (512-dim) by an embedding layer
and then forwarded to N = 6 identical layers. Each of them
has a multi-head attention module and a fully-connected
feed forward network. The primary image features have
d;init = 2048 dimensions. The outputs of each layer have
d = 512 dimensions while the intermediate outputs inside
layers have dyy = 2048 dimensions. The text encoder is al-
most the same as the image encoder, except that we embed
each word and apply positional embedding at the beginning.
The decoder is also stacked with NV = 6 identical layers, the
same as the structure in [24].

The Adam optimizer with 5; = 0.9, B2 = 0.98 and € =
10~Y is adopted to train the model. The text reconstruction
and image captioning with the loss in and respec-
tively are trained for 15 epochs respectively. For the learn-
ing rate schedule, we follow [24]], i.e. learning-rate =
d=%% min(iter =% iter - warmup~1-%), where iter refers
to the number of iterations, and warmup = 20000. When
training the image captioning with SCST [23], we use the
initial learning of 10~° and decay by 0.8 every 3 epochs.
This step is trained for 20 epochs. We use beam search with
beam_size = 2 for outputs. The batch size of 10 is used
throughout the experiment. We set the margin £ = 0 in (I0)
and o = 1.0 in (13).

Att2in  Att2in [27, 23] uses the features extracted from
ImageNet [3] as the primary image features. To refine the
image encoder, we add 2 extra layers. The modified image
encoder and text encoder are the same with the Transformer
model mentioned above, except that NV is set to 2 instead of
6. The Adam optimizer with initial learning rate of 574 is
adopted for the stages of caption reconstruction and image
captioning (without SCST). These two stages are trained for
20 epochs respectively. At the last stage, SCST is trained for
20 epochs. The initial learning rate is 10~°.



Up-Down The Up-Down model [2]] takes the image fea-
tures extracted from Faster R-CNN as inputs. The Up-
Down model used in our experiments is also modified as
the way to Att2in. The hyperparameters for the optimizer
and training process are the same as Att2in.

5.3. Quantitative Results

In Table [2} the performance of the proposed models and
the comparison with baselines are reported. We conduct
our experiments on three baselines, i.e. Att2in, Up-Down
and Transformer. Note that in the original Att2in and Up-
Down model, the image encoders are fixed without finetun-
ing on image captioning dataset. Since the proposed mod-
ule improves the baselines by refining the image encoder,
we add two extra layers to the original Att2in and Up-Down
model. To make fair comparison, the performance of mod-
ified baselines are reported in Table 2]

The results show that the proposed method outperform
all the three baselines both with and without SCST, which
validate the efficiency of the proposed module.

The experiments on the efficiency of partial-order re-
stricted training (POR) on Transformer are also conducted.
By adopting POR, the performance further improves from
129.9 to 130.9.

Table [3] shows the comparison between our model and
previously proposed models. our single model achieves
39.5 on BLEU-4, 130.9 on CIDEr-D and 23.0 on SPICE,
which outperforms many existing models including SGAE,
GCN-LSTM and AoANet with a noticeable margin.

5.4. Qualitative Analysis: Visualizing the Align-
ments

The alignments between image regions and words are
visualized to validate that the proposed ITT module with
partial-order restricted training can learn reasonable align-
ments. The top-3 similar image regions aligned to each
word are shown in Fig. [5| During visualization, we re-
regularize the similarity of the top-3 scored image regions
first and apply Gaussian mask on the regions. The Gaussian
mask is used to take the center of the rectangle regions as
the mask’s center, and the width and height of the region
is used as o, and o,. We only use the first “head” atten-
tion matrix in the multi-head attention module. Note that
the visualizations to other heads are also consistent. In the
visualization, the regions masked with lighter blue are those
attract more attention.

Fig. [5 shows the comparison between models without
partial-order restricted training and with partial-order re-
stricted training. For the caption “a bowl of broccoli on
a cutting board”, the model without partial-order restricted
training can only correctly align to the word “brocolli” and
the aligned regions through the sentences are disordered, as
is shown in the first set of Fig. [5a] When it comes to the the

results with partial-order restricted training (the second set
of Fig. [5a), it can easily tell that the aligned regions move
from the regions of bowls and broccoli to the regions of the
surrounding which is the cutting board in this case. For the
caption “a cat with its nose next to a sandwich on a white
plate”, the model without partial-order restricted training al-
most attend to all the regions of cat, sandwich and plate for
each word (the first set of Fig. [5b). The model with partial-
order restricted training works much better (the second set
of Fig. [5b). It attends to the region of the cat at the first
few words and then move the region of the plate and sand-
wich. It shows that with partial-order restricted training, the
model can learn better alignments to words and the aligned
regions move along with the changes of described objects
in sentences.

le8
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Figure 3: The number of pixels against the total aligned
weight on each pixel. With POR, less pixels are assigned to
low scores, which means the distribution of aligned scores
are more clustered to certain regions.

Statistical Analysis on the Distribution of Aligned Scores
The distribution of the aligned scores is also plotted, as il-
lustrated in Fig. For each sentence, the noun words
extracted by Part-of-Speech provided in NLTK library are
gone through and the aligned scores are added to each im-
age region (all the pixels inside). We then group the total
aligned scores of each pixel into 20 buckets. The i-th bucket
represents the range (15, “f5-]. Then the numbers of pixels
against aligned scores of pixels are plotted. Fig. [3] shows
that, when adopting POR, the model tends to assign higher
scores to more pixels and lower scores to less pixels. This
means that the attended regions are less disperse, which is
consistent with the goal of alignment.

In @] we plot the loss in (I0) and CIDEr against the

epoch. When adding the (T0) to previous models, the CIDEr



Method SCST BLEU-1

BLEU-4 METEOR ROUGE-L CIDEr-D SPICE

Att2in [27, 23] - 31.3 - 54.3 101.3 26.0
Att2in* 75.4 34.0 26.5 55.1 108.6 20.2
Att2in* + ITT 75.3 34.0 26.6 55.2 109.4 20.1
Att2in [23]] v - 33.3 - 55.3 111.4 26.3
Att2in* v 77.0 35.1 26.8 56.1 116.0 20.5
Att2in* + ITT v 77.2 353 27.0 56.5 117.1 20.8
Up-Down[2]] 77.2 36.2 27.0 56.4 113.5 20.3
Up-Down* 76.8 35.8 27.5 56.6 113.7 20.7
Up-Down* + ITT 76.6 35.8 27.7 56.7 114.2 20.9
Up-Down[2] v 79.8 36.3 27.7 56.9 120.1 214
Up-Down* v 78.9 36.9 27.8 57.5 122.9 21.3
Up-Down* + ITT v 79.1 36.8 28.0 57.6 123.5 21.3
Transformer [[18]] 76.4 354 27.9 56.5 114.5 21.1
Transformer + ITT (w/o POR) 76.2 35.6 28.0 56.5 115.2 21.1
Transformer + ITT 76.4 36.4 28.4 57.1 117.1 21.4
Transformer [[18]] v 80.1 39.0 28.8 58.6 128.0 22.5
Transformer + ITT (w/o POR) v 80.9 39.3 29 58.8 129.9 22.8
Transformer + ITT v 81.1 39.5 29.2 59.1 130.9 23.0

Table 2: The comparison with Att2in, Up-Down and Transformer. The performance of both original baseline models and
modified baseline models are shown in the table. The modified baseline models are marked with “*”. Our module integrating
into the baselines are presented with “+ ITT”. The models with ITT, if not specified, are trained with POR training, while
models with “(w/o POR)” are trained with ITT but not POR training. The “SCST” column indicates whether trained with
SCST. The best result in each block are highlighted with bold.

Method BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D SPICE
Up-Down [2] 79.8 36.3 27.7 56.9 120.1 214
RFNet [13] 79.1 36.5 27.7 57.3 121.9 21.2
RFNet> [13] 80.4 37.9 28.3 58.3 125.7 21.7
GCN-LSTM [29] 80.5 38.2 28.5 58.3 127.6 22.0
SGAE [28]] 80.8 38.4 28.4 58.6 127.8 22.1
SGAE™ [28] 81.0 39.0 28.4 58.9 129.1 22.2
AoANet [[11] 80.2 38.9 29.2 58.8 129.8 224
Transformer [18]] 80.3 38.9 28.8 58.6 127.5 22.6
Transformer + ITT 81.1 39.5 29.2 59.1 130.9 23.0

Table 3: Quantitative Comparison with previous models. Our single model outperforms the previous models on all evaluation
metrics. > indicates ensemble models while others are single models. The best result on each evaluation metric is highlighted
with bold. The first block is the performances published and the second block is our best single model.

further improves from 112.9 to 114.6 with 5 epochs, which
confirm the capability of adopting the loss in (I0).

6. Conclusions

In this paper, a Image-to-Text Transformation module is
proposed to bridge the gap between image and text repre-
sentations. This module learns to project the image features

to text features. This relationship is encouraged by modify-
ing the image features, and it is expected the decoder has the
ability to learning this relationship, and as a consequence,
generate better captions given an image. In order to ob-
tain better alignment between image regions and words, we
further propose a partial-order training strategy which self-
supervise the training of the alignment.
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Figure 4: Loss in (I0) and CIDEr during training. When
adding the (T0) to previous models, the CIDEr further im-
proves from 112.9 to 114.6.
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