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Abstract—Reinforcement learning (RL) algorithms have been
shown to be efficient in training image captioning models. A
critical step in RL algorithms is to assign credits to appropriate
actions. There are mainly two classes of credit assignment
methods in existing RL methods for image captioning, assigning
a single credit for the whole sentence and assigning a credit
to every word in the sentence. In this paper, we propose a
new credit assignment method which is orthogonal to the above
two. It assigns every word in vocabulary an appropriate credit
at each generation step. It is called vocabulary-wide credit
assignment. Based on this we propose a Vocabulary-Critical
Sequence Training (VCST). VCST can be incorporated into
existing RL methods for training image captioning models to
achieve better results. Extensive experiments with many popular
models validated the effectiveness of VCST.

Index Terms—Image Captioning, Reinforcement Learning,
Artificial Intelligence

I. INTRODUCTION

G IVEN an image, automatically generating a description
using natural language is called image captioning. This

task integrates techniques in both computer vision (CV) and
natural language processing (NLP), which has many applica-
tions. It has been studied for many years [1], [2], [3], [4].
In recent years, deep learning [5], [6], [7], [8] has made
great progress on this task. Many excellent models have been
proposed including the Show-and-Tell model [5], the Att2in
model [7] and the Up-Down model [8]. Most of them follow
the encoder-decoder framework [6]. The encoder is usually
a convolutional neural network (CNN) that extracts image
features from the input, and the decoder is usually a long short
term memory (LSTM) [9] that decodes the image features to
generate sentences.

To train the models, earlier methods adopted the Teacher-
Forcing method, which is to maximize the likelihood of
the next ground-truth word given the previous ground-truth
words. This strategy leads to so called “exposure bias” [10]
due to the absence of ground-truth words in previous steps
during the generation of a sentence in inference. In addition,
the maximum likelihood does not necessarily correspond to
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Fig. 1. Three kinds of credit assignments. (a) Sequence-level credit
assignment assigns a single credit to the whole sentence. (b) Word-
level credit assignment assigns different credits to all words in the
sentence. (c) Vocabulary-wide credit assignment assigns different
credits to all words in vocabulary at every generation step.

the maximum evaluation metrics developed in NLP such as
CIDEr [11] and BLEU [12], which are commonly used to
measure the performance of models on this task.

To solve both problems, reinforcement learning algorithms
(RL) were introduced to this task. Ranzato et al. [13] firstly
introduced REINFORCE to sequence generation tasks. Fol-
lowing that work, Rennie et al. [14] improved the baseline of
REINFORCE and proposed Self-Critical Sequence Training
(SCST), which has become the most popular RL algorithm
for image captioning nowadays [8], [15], [16], [17]. Zhang et
al. [18] used actor-critic algorithm in training image captioning
model to replace sequence-level advantage with word-level
advantage and Gao et al. [19] improved actor-critic algorithm
by estimating state-action value with Monte-Carlo rollouts.
With these RL methods, significant improvement has been
achieved.

Among these RL methods, some assign a credit for the
whole generated sentence [13], [14] and others assign word-
level credit for each word in the generated sentence [18], [19],
[20]. Both sequence-level and word-level credit assignments
focus on the generated words. However, in these sequence-
level and word-level methods, the rewards are usually given
to evaluate the whole sentence, which care more about the
structure of sentences than local connections of words.

To explore the effectiveness of local connections of words
in the training of image captioning, we propose a vocabulary-
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wide credit assignment that assigns credit to every word in the
vocabulary at each generation step. Figure 1 shows these three
kinds of credit assignment methods.

In vocabulary-wide credit assignment, rewards are given
to estimate how the score would change with replacing one
word, which focus on the local connections of words. From
another point of view, the estimation of score variation propels
the model to roughly explore these generation trajectories
with word replacement, which helps to search for the best
generation trajectory.

To achieve vocabulary-wide credit assignment, we design
a “vocabulary-critic”. At every step of word generation in an
image captioning model, the vocabulary-critic estimates the
metric improvement induced by replacing the current word
with every other word in the vocabulary, then the metric
improvement is used as a reward to optimize the policy of
word generation. With the vocabulary-wide credit assignment,
we propose a training method named Vocabulary-Critical
Sequence Training (VCST), which can be incorporated into
existing RL methods to improve their performance.

Contributions To sum up, our contributions are as follows:
• We propose a novel RL method in image captioning

called “Vocabulary-Critical Sequence Training” (VCST).
In VCST, a vocabulary-critic module based on word
replacement is designed to assign every word in the
vocabulary a different credit at each generation step.

• To reduce the time cost of metrics calculation in VCST,
we propose fast algorithms for computing the CIDEr-D
metric and the BLEU metric. With our fast computing
methods, the time costs for computing CIDEr-D and
BLEU-4 are reduced by 97% and 72%, respectively.

• On the MSCOCO Karpathy test set, the combination of
VCST and Self-Critical Sequence Training (SCST) [14]
improved the CIDEr-D metric from 121.9 to 125.0 on
a single Up-Down model [8] , from 127.8 to 129.1 on
a single SGAE model [16] and from 132.0 to 132.4 on
a single X-LAN model [21]. Moreover, the experiments
showed that VCST could also boost the performance of
the Actor-Critic Sequence Training (ACST) [18].

II. RELATED WORK

In earlier years image captioning models were usually
template-based [2], [3] or retrieval-based [1], [4]. With the
development of deep learning, encoder-decoder framework [5]
was introduced to this task where the encoder extracts features
from images and the decoder generates natural language sen-
tences from image features. Different models may use different
encoders or decoders, which are usually neural networks [5],
[7], [8], [22]. Based on the encoder-decoder architecture, many
progresses have been made. Recent progress on this topic can
be divided into two branches: designing new architectures and
proposing better training methods. We review the researches
in these two branches.

A. Model Architectures

Vinyals et al. [5] first introduced encoder-decoder frame-
work to image captioning. They used a CNN pre-trained on

image classification task as encoder to extract image features
and used an LSTM as decoder to generate captions. To
improve the decoder in encoder-decoder framework, Xu et
al. [7] introduced dynamic spatial attention and proposed
soft attention and hard attention mechanisms. Following these
works, many improvements have been made. Lu et al. [23]
proposed adaptive attention which can automatically decided
when to rely on image regions and when to rely on the
language model in sequence generation. Chen et al. [24]
proposed SCA-CNN which incorporated spatial and channel-
wise attention in the encoder. Anderson et al. [8] improved
the attention module with a novel 2-layer LSTM and replaced
the encoder pre-trained on image classification task with a
Faster R-CNN [25] pre-trained on the object detection task
of Visual Genome [26] dataset. Yao et al. [15] proposed
the GCN-LSTM model, which used a graph convolutional
network to integrate the spatial and semantic relationship into
the encoder. Yang et al. [16] proposed the SGAE model,
which added a language prior to the encoder by training a
shared dictionary Huang et al. [17] proposed the AoANet
model, which extends attention mechanisms to determine the
relevance between attention results and queries.

Recently transformer [27] was introduced to this task and
obtained good results. Yu et al. [28] designed a Multimodal
Transformer for image captioning and introduced multi-view
visual features to their model. Pan et al. [21] modified the
attention block of transformer then proposed the X-Linear
Attention Networks. Cornia et al. [29] proposed a Meshed-
Memory network, in which memory was introduced to the
transformer encoder and a meshed-like connectivity was used
to exploit both low-level and high-level features.

B. Training Methods
Earlier models [5], [7], [30], [23] adopted the Teacher-

Forcing training method [10], [13], which uses the ground-
truth captions as the input and trains the model by maximizing
the likelihood of the next ground-truth word. However, the
“exposure bias” [10] and the mismatch between training
targets and evaluation metrics limit its performance.

A lot of study have been made to address these prob-
lems. Bengio et al. [10] proposed Scheduled Sampling which
combines the Teacher-Forcing strategy and the Free-Running
strategy. Lamb et al. [31] proposed Professor Forcing which
used adversarial domain adaptation to train recurrent networks.
Although these methods addressed the “exposure bias” to
some extent, the mismatch between targets and evaluation
metrics still remains.

Recently RL was shown to be effective in improving perfor-
mance in terms of NLP evaluation metrics. Ranzato et al. [13]
proposed the MIXER algorithm, the first RL method in se-
quence generation. The algorithm mixes maximum likelihood
estimation (MLE) and policy gradient (PG) and gained large
improvement. Later, many RL methods [20], [14], [19], [18]
were introduced to image captioning. Liu et al. [32] proposed
PG-SPIDEr method which separated the MLE training and
PG training and combined the SPICE metric and the CIDEr-D
metric. Zhang et al. [18] introduced actor-critic structure to im-
age captioning and proposed Actor-Critic Sequence Training.
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Fig. 2. Illustration of the proposed method. (a) The sketch of image captioning model with VCST. The vocabulary-critic takes in the ground-
truth captions and the generated caption, then evaluates all the words in vocabulary at each generation step in training. (b) Change of the
frequencies of n-grams after replacing a word ‘food’ with ‘french’. Note that only the words on the left side of the dashed line are considered
according to the assumption stated in the text.

Rennie et al. [14] proposed Self-Critical Sequence Training,
which uses the score of the sentence generated by the model
with greedy policy as the baseline of RL. Gao et al. [19]
reformulated the advantage and extended one step to n-step.
These RL methods significantly improved the performance of
image captioning models.

III. METHODS

A. Background Knowledge

1) Self-Critical Sequence Training: Self-Critical Sequence
Training (SCST) is a general training method in image
captioning. In SCST, the captioning model is treated as an
“agent”, and the external information like inputs and ground-
truth constitutes the “environment”. At each step t, the agent
performs an “action” to generate a word w∗t , and then updates
its own hidden state. After sentence generation, a metric
Ψ (e.g., CIDEr-D, BLEU) takes in the generated sentence
s∗ = {w∗1 , ..., w∗T , w∗T+1} and the ground-truth sentences set
Ξ = {ξ1, ..., ξm} to generate a reward r(s∗) = Ψ(s∗|Ξ), where
T denotes the length of the sentence s∗, w∗T+1 denotes “EOS”
that indicates the end of generation, and ξk denotes the k-th
sentence in the ground-truth set Ξ.

Let θ denote the parameters of the model and pθt denote
the probability distribution of word generation at step t. The
probability distribution of a sentence s = {w1, ..., wT , wT+1}
is pθ(s) =

∏
t p
θ
t (wt|w1, ..., wt−1). The target of SCST is to

minimize the negative expected reward:

Lscst(θ) = −Es∼pθ [r(s)]. (1)

According to the REINFORCE algorithm [33], for each train-
ing case the loss of SCST can be approximated as the follows:

Lscst(θ) = −(r(s∗)− r(ŝ)) log pθ(s∗), (2)

where s∗ is the sentence sampled from the distribution pθ(s),
and ŝ is the sentence generated by the same model with the
greedy policy.

2) Actor-Critic Sequence Training: Actor-Critic Sequence
Training (ACST) consists of two parts: a policy network and
a value network. The policy network is a captioning model
for generating captions and the value network is a sequence
model such as LSTM for predicting values of each state.
Let θ denote the parameters of policy network, ζ denote the
parameters of value network, s∗t = {w∗1 , ..., w∗t } denote the
sentence composed of the first t words, Vζ(s∗t ) denote the
value of s∗t predicted by the value network. The losses of
value network Lv and policy network Lp can be written as
follows:

Lv(ζ) =

T∑
t=0

||γT−tr(s∗)− Vζ(s∗t )||2, (3)

Lp(θ) = −
T∑
t=0

A(s∗t , w
∗
t+1) log pθt (w

∗
t+1|s∗t ), (4)

where
A(s∗t , w

∗
t+1) = γT−tr(s∗)− V (s∗t ). (5)

γ is a discount factor and we set γ to 1 in our experiments.
The loss of ACST is the combination of Lv and Lp:

Lacst(ζ, θ) = Lp(θ) + βLv(ζ), (6)

where β is a weighting coefficient.

B. Vocabulary-Wide Credit Assignment With Vocabulary-
Critic

As we discussed in Section I, vocabulary-wide credit assign-
ment means that we need to assign a reasonable score to every
word in the vocabulary Ω at every generation step, which is
a heavy work. To achieve vocabulary-wide credit assignment,
we design a “vocabulary-critic” based on word-replacement.

Assuming that the model generates a sentence s∗ =
{w∗1 , ..., w∗t , ..., w∗T , w∗T+1}, for a word w′t at step t, we
calculate its score by estimating the improvement on the
NLP metric induced by replacing the word w∗t generated at
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step t with w′t. If we replace the t-th word w∗t in s∗ with
w′t and continue the generation to form the new sentence
s′ = {w∗1 , ..., w∗t−1, w

′
t, ..., w

′
T ′ , w

′
T ′+1}, the score of w′t at

the time t is

rt(w
′
t|s∗) = Ψ(s′|Ξ)−Ψ(s∗|Ξ). (7)

We call this strategy the full evaluation strategy. Let |Ω|
denote the size of the vocabulary and L denote the maximum
length of generated sentences. To calculate (7) for every word
in Ω at every step t, this strategy entails O(|Ω|L) times
of LSTM feedforward processes (from the first word to the
last word). Note that |Ω| ∼ 104 and L ∼ 20 in a typical
image captioning task. On a mainstream server with one
GTX Titan X GPU (memory 12GB), an LSTM feedforward
process takes about 50ms on average. Training one epoch
of the MSCOCO Karpathy training images will take about
110 days with batchsize 50. The full evaluation strategy is
computationally prohibitive.

The main reason for the high computational cost is that for
every word in Ω we need to perform an LSTM feedforward
process and a metric calculation process, because once w∗t
in s∗ changes, all subsequent words may change. To reduce
the computational cost, we propose to perform the LSTM
feedforward process once by assuming that subsequent words
do not change after w∗t changes. In this way, only one sentence
is generated and the number of LSTM feedforward processes
is reduced from O(|Ω|L) to O(L). Of course the score
obtained for each word is a rather rough approximation of
that defined in (7), but our experiments show that the strategy
is both effective and efficient.

Note that the most commonly used NLP metrics such as
BLEU and CIDEr-D are determined by n-gram frequency and
the length of caption. More specifically, the score in (7) can
be interpreted as how the replacement influences the n-gram
frequency. Let hn(x|s) denote the times that n-gram x occurs
in sentence s and hn(s) denote the vector composed of those
occurring times: hn(s) = [hn(x1|s), hn(x2|s), ...] where xi is
the i-th n-gram. We rewrite Ψ as a function of H(s) and l(s):

Ψ(s|Ξ) = ψ(H(s), l(s)|Ξ), (8)

where H(s)={h1(s), ...,hN (s)} and l(s) is the length of s. N
is the maximum n in calculating metrics. It indicates that the
reward is affected by the change of the n-grams (Figure 2b).

According to the above stated assumption, at step t,
we only consider the change of the reward of the sen-
tence s∗ by replacing w∗t with w′t. We further assume
that only the frequencies of n-grams ending with w′t and
w∗t change. Specifically, let hn(x|s∗w∗t→w′t) denote the num-
ber of n-gram x after the replacement, where s∗w∗t→w′t

=

{w∗1 , ..., w∗t−1, w
′
t, w
∗
t+1, ..., w

∗
T+1}. Then

hn(x|s∗w∗t→w′t) =


hn(x|s∗) + 1 x={w∗t−n+1, ..., w

′
t}

hn(x|s∗)− 1 x={w∗t−n+1, ..., w
∗
t }

hn(x|s∗) else.
(9)

An example is illustrated in Figure 2b. A new n-gram fre-

quency vector hn(s∗w∗t→w′t
) is obtained:

hn(s∗w∗t→w′t) = {hn(x1|s∗w∗t→w′t), h
n(x2|s∗w∗t→w′t), ...}. (10)

With these assumptions, the length l(s∗) does not change. So
the score can be rewritten as

rt(w
′
t|s∗) = ψ(H(s∗w∗t→w′t), l(s

∗)|Ξ)− ψ(H(s∗), l(s∗)|Ξ),

(11)
where H(s) = {h1(s), ...,hN (s)}.

Moreover, we consider the influence of changing the length
of s∗ when replacing w∗T+1 = “EOS” with other words.
Similar to the definition of the score of a word, we define
the score of the length as follows:

rlen(s∗) = ψ(H(s∗), l(s∗) + 1|Ξ)− ψ(H(s∗), l(s∗)|Ξ).
(12)

So we can estimate an NLP metric improvement caused by
replacing a word in the generated sentence with any other
word in the vocabulary.

The Vocabulary-Critic algorithm is sketched in Algo-
rithm 1.

Algorithm 1 Vocabulary-Critic Algorithm
Input: Sentence s = {w1, ..., wt, ..., wT , wT+1}; Evaluation

Metric ψ; Ground-truth set Ξ; Vocabulary Ω;
Output: rt(w|s), t ∈ [1, T + 1], w ∈ Ω; rlen(s);

1: Compute H(s) and l(s) (defined in Sec III-B)
2: Compute ybase = ψ(H(s), l(s)|Ξ)
3: for each t ∈ [1, T + 1] do
4: for each w ∈ Ω do
5: Compute H(swt→w) with (10)
6: Compute ywt→w = ψ(H(swt→w), l(s)|Ξ)
7: Compute rt(w|s) = ywt→w − ybase
8: end for
9: end for

10: Compute ylen = ψ(H(s), l(s) + 1|Ξ)
11: Compute rlen(s) = ylen − ybase

C. Fast Calculation of Metrics

At every step t, one needs to calculate the evaluation metrics
for the sentence s∗ with w∗t replaced with every w′t in Ω.
This entails O(|Ω|L) times of metric calculation for replacing
every word in s∗. It takes the CPU on our server about 239
ms for calculating the CIDEr-D score. Training one epoch
of the MSCOCO Karpathy training images will take about 7
hours, which is still computationally expensive. The reason
is that computing ψ(H(s), l(s)|Ξ) for a sentence s involves
O(L) multiplications and additions. Fortunately, we found that
there exist efficient algorithms for calculating CIDEr-D and
BLEU scores given the scores of the original sentence s∗.
The algorithms involve O(1) multiplications and additions.
Note that CIDEr-D is one of the most important metrics in
evaluating image captioning models [5], [7], [34], [35], [8],
[14] and BLEU is widely used across a lot of NLP areas [36],
[37], [38], [34].

In what follows, we introduce our fast computing method
for CIDEr-D only, since in the image captioning field, more
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and more works (e.g. [19], [14], [18]) emphasized on improv-
ing CIDEr-D value. And the method for BLEU is in the same
spirit and can be found in Appendix A.

Following our notations in Section III-A1 and III-B, s∗ =
{w∗1 , ..., w∗T+1} denotes the generated sentence of a image,
and Ξ = {ξ1, ..., ξm} denotes the ground-truth captions set,
where ξj is the j-th ground-truth caption in Ξ. In additional,
sum(x) denotes the element-sum of a vector x, min(x,y)
denotes the element minimum of two vectors x and y, x · y
denotes inner product of x and y, ‖x‖ denotes the 2-norm of
x, and ∂ denotes the symbol of partial derivative.

CIDEr-D metric consists of two factors, length factor A and
frequency factor B. The length factor is

Aj(l(s
∗)) = e

−(l(s∗)−l(ξj)
2

2σ2 , (13)

with σ = 6, and the frequency factor is shown as follows:

Bnj (s∗) =
min(gn(s∗), gn(ξj)) · gn(ξj)

‖gn(s∗)‖ ‖gn(ξj)‖
, (14)

where gn(s) = [gn(x1|s), gn(x2|s), ...] (xi is the i-th n-gram)
denotes the TF-IDF weighting for the n-grams of s. Denote
IDFn(x) as the IDF of the n-gram x which is computed with
the training captions, the elements of gn(s) is defined as

gn(x|s) =
hn(x|s)

sum(hn(s))
IDFn(x). (15)

The CIDEr-D for n-gram is defined as

CIDEr-Dn(s∗|Ξ) =
10

m

∑
j

Aj(l(s
∗))Bnj (s∗), (16)

where m is the number of captions in Ξ. The final CIDEr-D
score is a weighted sum of these CIDEr-Dn:

CIDEr-D(s∗|Ξ) =

N∑
n=1

wnCIDEr-Dn(s∗|Ξ), (17)

and we usually set wn = 1/N and N = 4 in (17).
The reward of replacing w∗t with w′t is

rt(w|s∗) =

N∑
n=1

10wn
m

∑
j

Aj(l(s
∗))4Bnj (s∗|w∗t → w′t),

(18)
where

4Bnj (s∗|w∗t → w′t) = Bnj (s∗w∗t→w′t)−B
n
j (s∗). (19)

We estimate (19) with the gradient of Bnj (s∗):

4Bnj (s∗|w∗t → w′t) ≈
∂Bnj (s∗)

∂hn(x′t|s∗)
−

∂Bnj (s∗)

∂hn(x∗t |s∗)
, (20)

where x′t={w∗t−n+1, ..., w
′
t} and x∗t={w∗t−n+1, ..., w

∗
t }.

Following (18) and (20), we can calculate rt(w′t|s∗) in O(1)
time complexity of multiplications and additions if the gradient
of Bnj (s∗) have been calculated for all n and j.

To investigate the efficiency of the proposed fast metric
calculation algorithms, we compared the time costs of this al-
gorithm and the standard algorithm for calculating vocabulary-
wide credit assignment in 5000 sentences generated by the

Up-Down model [8], which are presented in Table I. It is seen
that the proposed algorithm saved the time cost for calculating
CIDEr-D and BLEU-4 by 97% and 72%, respectively.

TABLE I
TIME COST OF THE STANDARD AND SIMPLIFIED ALGORITHMS

FOR CALCULATING VOCABULARY-WIDE CREDIT ASSIGNMENT IN
ONE SENTENCE. MEAN±STANDARD DEVIATION.

Standard Simplified

CIDEr-D 239.6± 1.8(ms) 7.4± 0.9(ms)
BLEU-4 62.3± 0.9(ms) 17.6± 1.9(ms)

D. Vocabulary-Critical Sequence Training (VCST)

With the vocabulary-critic, at every step t of sentence s∗

we can assign a score rt(w
′
t|s∗) to every word w′t in the

vocabulary Ω. These scores are used to guide the sentence
generation. Similar to other policy-based RL methods, our
training target is to minimize the negative expected reward
at every time step t:

Lvcst(θ|s∗) = −
T+1∑
t=1

Ew′t∼pθt [rt(w
′
t|s∗)]

− Ew′T+1∼pθT+1
[rlen(s∗)]

= −
T+1∑
t=1

∑
w′t∈Ω

rt(w
′
t|s∗)pθt (w′t)

+ rlen(s∗)pθT+1(“EOS”) + const.

(21)

The second equality holds because

Ew′T+1∼pθT+1
rlen(s∗) =

∑
w′T+1∈Ω\“EOS”

rlen(s∗)pθT+1(w′T+1)

= rlen(s∗)(1− pθT+1(“EOS”)).
(22)

Note that rlen(s∗) is independent with θ, thus is a constant.
So the gradient of VCST loss is

∇θLvcst(θ|s∗) =−
T+1∑
t=1

∑
w′t∈Ω

rt(w
′
t|s∗)∇θpθt (w′t)

+ rlen(s∗)∇θpθT+1(“EOS”).

(23)

E. Combining VCST with Other RL Methods

Since the VCST loss is derived under rather strong assump-
tions, VCST cannot get a good performance without help of
other RL methods. We combine their losses with the loss of
VCST for training an image captioning model. For SCST, the
combined loss is:

Lall = Lscst + αLvcst, (24)

where α is a hyper-parameter to be tuned in different experi-
ments. For ACST, the combined loss is:

Lall = Lacst + αLvcst. (25)
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IV. EXPERIMENT SETTINGS

A. Dataset

The models were trained and tested on the MSCOCO 2014
caption dataset [39], [40] which contains 123287 images. Each
image has 5 or 6 captions as its ground-truth. We followed the
Karpathy’s split [41] where there are 113287 images in the
training set, 5000 images in the validation set and 5000 in
the test set. We report the results on BLEU, ROUGE-L [42],
METEOR [43], CIDEr-D and SPICE metrics.

In the experiments on the Att2in [7], Top-Down [8], Up-
Down [8] and X-LAN [21] models, we pruned the words
which appear less than 5 times and obtained a vocabulary of
size 9487 words. In the experiments on the SGAE model [16],
we followed the pre-processing in the SGAE model [16] which
has a vocabulary of 10369 words.

B. Image Features

We used two sets of image features in the experiments.
(a) Features extracted from layer4 of ResNet-101 [44]

trained on the ImageNet [45] classification task. We resized
the image to 448 × 448, and applied average pooling to the
feature map of layer4. The shape of our final features was
14× 14× 2048. We used the 14× 14 vectors as the input of
attention mechanism and the average of the 14 × 14 vectors
as the feature of the whole image.

(b) Features extracted from Faster R-CNN [25] with
ResNet-101, the same as the representation used in [8]. The
Faster R-CNN generated regions of interest (RoI), and outputs
the feature map of RoI pooling5. The number of RoIs was in
the range of [10, 100]. The dimension of each feature of RoI
was 2048. We used these features of RoIs as the input of
attention mechanism and the average of all RoI features as
the feature of the whole image.

C. Captioning Models

We experimented with five recent models: the Att2in
model [7], the Top-Down model [8], the Up-Down model [8],
the SGAE model [16] and the X-LAN model [21]. In the
experiments, the Att2in model and the Top-Down model took
features (a) as input. The Up-Down model, the SGAE model
and the X-LAN model took features (b) as input.

D. Implementation Details

1) Combination of VCST and SCST: Since SCST is a
general training method in image captioning, our experiments
mainly combined VCST with SCST. We applied the combina-
tion of VCST and SCST to the Att2in, Top-Down, Up-Down
and SGAE models. Both dimensions of LSTM hidden layer
and word embedding were set to 1024 for the Att2in, Top-
Down and Up-Down models, and 1000 for the SGAE model.

A three-stage training process was adopted in our exper-
iments. The Att2in, Top-Down and Up-Down models were
trained from scratch. In the first stage, cross-entropy (XE) loss
was adopted to train the model with random initialization. The
learning rate was set to 5× 10−4 initially. We performed the
learning rate decay every 3 epochs by a factor of 0.8 and

TABLE II
TEST SCORES (%) OF THE THE UP-DOWN MODEL TRAINED WITH

DIFFERENT LOSSES.

Method BLEU-4 CIDEr-D

Up-Down+XE 33.7 109.0
Up-Down+XE+VCST 33.4 107.6
Up-Down+SCST 37.3 121.9
Up-Down+SCST+VCST 38.0 125.0
Up-Down+VCST 30.2 98.9

increased the probability of schedule sampling [10] every 3
epochs, from 0.05 to 0.25. In the second stage, SCST was
adopted to optimize the model. In SCST, we used the learning
rate of 5×10−5 and decayed the learning rate every 4 epochs
by a factor of 0.8. In the last stage, We used the loss in (21) to
train the model with a learning rate 5× 10−5. For the SGAE
model, we started from the pre-trained model in [16], then
trained the model with the method described in the third stage.
The learning rate was set to fixed 5 × 10−6. For the X-LAN
model, we started from the pre-trained model in [21], and only
trained the model in the third stage with a 5× 10−7 learning
rate. The ADAM [46] algorithm was used in all training stages.
The three stages for the first three models took about 6h,30h
and 70h, respectively, with batch size 50 on a single GTX Titan
X, and the third stage for the SGAE model and the X-LAN
model took about 70h and 30h, respectively.

2) Combination of VCST and ACST: We tested the com-
bined algorithm on the Att2in model and the Up-Down model.
The settings of both models were the same as those in
Section IV-D1. Different from SCST, ACST needs a pre-
trained value network. The value network is an LSTM and the
dimension of that LSTM hidden layer is 1024. We pre-trained
the value network for 3 epoches using Adam optimizer with a
initial learning rate 5×10−5 and the learning rate decayed by
a factor 0.8 for each epoch. Following [18], we set β in (6)
to 0.5. A three-stage training process similar to Section IV-D1
was adopted in training. Different from Section IV-D1, the
loss of SCST in the second stage was replaced with loss of
ACST, and the combined loss in the third stage was replaced
with (25). For all the three stages of training both of the Att2in
model and the Up-Down model, we followed the settings of
learning rate and α in Section IV-D1.

V. RESULTS

A. Time Cost of the Fast Metric Calculation Algorithms

As we have shown that the fast metric calculation algorithms
can reduce the time cost of metric calculation in VCST signif-
icantly. However, the time cost of these algorithms inevitably
increases with larger vocabulary. To analyse the changing of
time cost with different vocabulary, we tested the average
time costs of the fast calculation algorithms for vocabulary-
wide credit assignment in a minibatch of the Up-Down model
with increasing size of vocabulary. The batch size was 50.
We fixed the ground truths and generated captions in this
experiment for all vocabulary sizes. As shown in Figure 3,
the average time costs increased linearly with the vocabulary
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TABLE III
THE NUMBER OF BAD-ENDINGS IN CAPTIONS GENERATED BY
DIFFERENT MODELS ON THE MSCOCO KARPATHY TEST SET.

Method CIDEr-D Bad-Ending

Up-Down+XE 109.0 0
Up-Down+SCST 121.9 338
Up-Down+SCST+VCST(standard) 126.2 1529
Up-Down+SCST+VCST(modified) 125.0 9

SGAE+XE 116.7 0
SGAE+SCST 127.8 264
SGAE+SCST+VCST(standard) 130.1 1683
SGAE+SCST+VCST(modified) 129.1 114

Fig. 3. The average time costs of the fast calculation algorithms for
CIDEr-D and BLEU-4 in a minibatch against the vocabulary size.
The errorbars denote the standard deviation.

size, but the increases were only about 0.09s and 0.29s for
CIDEr-D and BLEU-4, respectively, when the vocabulary size
increased from 10k to 100k. In training, the total time costs
per minibatch were 4.42s and 8.20s in the two cases. These
increases were 0.09/4.42=2.0% and 0.29/8.20=3.5% of the
total time costs, which were negligible. Therefore, the time
cost of our proposed algorithm are not very much sensitive to
the vocabulary size, and has potential to be applied to many
tasks.

B. Effect of Hyper-Parameter α

As discussed in Section III-E, we should combine VCST
with other RL methods to achieve good performance. To
investigate the effect of α, we trained the Att2in, Top-Down,
Up-Down, SGAE and X-LAN models with the combination of
VCST and SCST, and varied α from 0.1 to 0.9. As shown in
Figure 4a, with α increasing, the performance of every model
first increased and then decreased. For each model, there was a
range of α that obtained significant increase. The Att2in, Top-
Down and Up-Down models obtained more than 1 point of
CIDEr-D with α in (0.1,0.5), (0.2,0.5), (0.1,0.8), respectively.
The SGAE model obtained more than 0.7 points with α in
(0.6,0.9). The X-LAN model obtained more than 0.3 points
with α in (0.6,0.8). Denote the best α for every model by α∗,
one interesting observation was that better models had higher

α∗, indicating that VCST played a more important role on
better baseline models.

Another interesting observation in experiments is that we
found that we could obtain a higher performance by increasing
α gradually than fixing it in training. Figure 4b compares the
curves of CIDEr-D metric on the validation set with fixed α
and gradually increasing α. It is seen that the models with
increasing α performed better.

We think the two observations are highly correlative. Since
better models needed higher α, we needed to increase α in
training with the performance of models improving.

Then in subsequent experiments, we adopted the strategy
that the α was increased by 0.025 when there was no increase
of the CIDEr-D performance on the validation set for 3
epoches. The initial α was 0.15, 0.15, 0.2, 0.7, 0.7 for the
Att2in, Top-Down, Up-Down, SGAE and X-LAN models,
respectively. And the final α was 0.5, 0.5, 0.5, 0.9, 0.8 for
these models, respectively.

If we set α to a very large value, the combination of VCST
and SCST performs like single VCST. To investigate that
extreme case, we started from the model trained with cross-
entropy (XE) loss and trained the model with the VCST loss
(21) alone. Table II shows the performance of that extreme
case on the Up-Down model. It is seen that the VCST loss
alone did not perform well. There are two possible reasons.
The first is that VCST is derived under strong assumptions.
The second is that VCST cares too much about local connec-
tions of words, which ignores the sentence structure. In VCST
we only care about the immediate impact of replacing a word
in the generated sentence with another word and ignore the
subsequent effects. We also tested the combination of XE loss
and VCST loss. In that experiment, we set the weights of the
VCST loss and the XE loss to be 0.5 and 1.0, respectively.
However, it did not perform well. This might due to the
discrepancy between the optimization goals of the XE loss
and the VCST loss.

C. Bad-Ending Problem on VCST
A caption with bad-ending means that the caption ends with

a word which shouldn’t appear at the end such as “a” and
“the”. Bad-ending is an inherent drawback for maximizing
CIDEr-D.

Table III shows the number of captions ended with four
words “a”, “the”, “of” and “with”, generated by the Up-
Down model and the SGAE model with CIDEr-D as the
target on the MSCOCO Karpathy test set. It is seen that
SCST yielded many such captions. By combining SCST and
VCST, the models generated even more such captions. To
alleviate this problem for the proposed method, we followed
Rennie et al.’s work [14] and adopted a modified CIDEr-D
for training. In the standard CIDEr-D calculation, “EOS” is
treated as an indicator to the end of generation only and it is
not involved in the calculation of CIDEr-D. In the modified
CIDEr-D, “EOS” is treated as both an indicator and a word,
i.e. n-grams like {w∗T−n+2, ..., w

∗
T , “EOS”} also participate in

CIDEr-D calculation.
Table III shows that, compared to maximizing the standard

CIDEr-D, the proposed method yielded slightly lower CIDEr-
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TABLE IV
TEST SCORES (%) OF DIFFERENT MODELS ON THE MSCOCO KARPATHY TEST SPLIT. THE MODELS WITHOUT “(BLEU)” WERE
OPTIMIZED WITH RESPECT TO CIDER-D WHILE THOSE WITH “(BLEU)” WERE OPTIMIZED WITH RESPECT TO BLEU-4. IN OUR

IMPLEMENTATION OF THE ATT2IN, TOP-DOWN AND UP-DOWN MODELS, BEAM SEARCH WAS NOT USED DURING TESTING. IN THE
SGAE AND THE X-LAN MODEL, BEAM SIZES WERE SET TO 5 AND 3, RESPECTIVELY. THE BEST SCORES OVER THE METHODS IN A

BLOCK ARE MARKED IN BOLD.

Method BLEU-1 BLEU-4 ROUGE-L METEOR CIDEr-D SPICE

Att2in+SCST [14] - 33.3 55.3 26.3 111.4 -
StackCap+SCST [47] 78.6 36.1 56.9 27.4 120.4 20.9
Up-Down+SCST [8] 79.8 36.3 56.9 27.7 120.1 21.4
CAVP+SCST [48] - 38.6 58.5 28.3 126.3 21.6
GCN-LSTM+SCST [15] 80.9 38.3 58.5 28.6 128.7 22.1
AoANet+SCST [17] 80.2 38.9 58.8 29.2 129.8 22.4
Att2in+SCST (our implem.) 77.2 33.3 55.5 26.3 113.1 19.6
Att2in+SCST+VCST 77.6 33.6 55.9 26.8 115.8 19.7
Top-Down+SCST (our implem.) 77.0 33.5 55.4 26.2 113.7 19.6
Top-Down+SCST+VCST 76.9 33.7 55.4 26.5 117.1 19.7
Up-Down+SCST (our implem.) 81.4 37.3 58.1 28.2 121.9 21.9
Up-Down+SCST+VCST 81.1 38.0 58.6 28.5 125.0 21.9
SGAE+SCST [16] 80.8 38.4 58.6 28.4 127.8 22.1
SGAE+SCST+VCST 80.9 38.9 58.7 28.6 129.1 22.0
XLAN+SCST [21] 80.8 39.5 59.2 29.5 132.0 23.4
XLAN+SCST+VCST 81.0 39.6 59.7 29.7 132.4 23.4
Up-Down+SCST(BLEU) 76.7 37.9 57.4 27.2 112.0 20.5
Up-Down+SCST+VCST(BLEU) 77.4 38.4 57.6 27.6 113.8 20.8

(a) (b)

Fig. 4. (a) Performances of the Att2in, Top-Down, Up-Down, SGAE and X-LAN models trained with different fixed α. The performances
of these models with their α∗ are circled in red. (b) Performance of the Up-Down model trained with different training methods in our third
stage as a function of training epoch on the validation set of Karpathy’s MSCOCO splits. The green curve shows the performance of single
SCST in the third stage (without VCST).

TABLE V
TEST SCORES (%) OF DIFFERENT MODELS TRAINED WITH SINGLE

ACST AND COMBINATION OF VCST AND ACST.

BLEU-4 CIDEr-D

Att2in+XE 31.6 100.9
Att2in+ACST 33.5 115.0
Att2in+ACST+VCST 33.9 116.5
Up-Down+XE 33.7 109.0
Up-Down+ACST 37.0 121.0
Up-Down+ACST+VCST 37.4 123.5

D scores, but significantly alleviated the bad-ending problem.

In the paper we report the results of the Up-Down model and
the SGAE model by optimizing the modified CIDEr-D. Note
that the modified CIDEr-D was only used in training, and in
testing we used the standard CIDEr-D.

D. VCST Improves SCST

Table IV shows our results on MSCOCO Karpathy test split
with the combination of VCST and SCST. In the first block of
Table IV, we report results of current advanced models. From
the second block to the fifth block are the results of optimizing
these models by VCST on CIDEr-D. We also applied our
VCST on BLEU-4 to the Up-Down model. The results are
shown in the last block of Table IV. For all models, we adopted
the increasing α strategy in Section V-B.
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Fig. 5. Some examples of word scores in captions evaluated by vocabulary-critic. The red words are the bad words in the captions. The
words in the right column are those suggested by vocabulary-critic.

As shown in Table IV, we obtained overall improvements on
most of the evaluation metrics when applying the combination
of VCST and SCST on the models. When optimizing on
CIDEr-D metric, we gained 2.7%, 3.4%, 3.1%, 1.3% and
0.4% of CIDEr-D on the Att2in, Top-Down, Up-Down, SGAE
and X-LAN models, respectively, compared with single SCST.
However, not all the metrics increased consistently. For ex-
ample, BLEU-1 decreased 0.1% and 0.3% on the Top-Down
and the Up-Down model, respectively, and SPICE decreased
0.1% on the SGAE model. The reason is that different metrics
are not necessarily positively correlated. The inconsistency on
different metrics can also be seen in other works [17]. Finally,
we also gained 0.5% improvement when optimizing on BLEU-
4 metric for training the Up-Down model.

E. VCST Improves ACST

Since we could not find the official released code of ACST,
we implemented ACST on the Att2in model and the Up-Down
model by ourselves. As shown in Table V, incorporated by
ACST method, our combined algorithm gained 1.5% improve-
ment on CIDEr-D with Att2in model and 2.5% improvement
with the Up-Down model by optimizing CIDEr-D metric.
Same to experiments on the combination of VCST and SCST,
We also adopted the increasing α strategy in this experiment.

F. Qualitative Analysis

To validate the rationality of VCST, we picked up some
bad captions generated by the Up-Down model after SCST
(the second stage), and checked how VCST corrected the
wrong words in captions. Figure 5 shows three words with top-
3 scores assigned by the vocabulary-critic at the highlighted
positions. The vocabulary-critic assigned higher scores to the
words appeared in the ground-truth captions, which could
guide the model to correct the captions. In fact, the most
appropriate words “holding”, “shopping” and “tie” received
the highest CIDEr-D and BLEU-4 scores, which met our ex-
pectation. But some inappropriate words also received positive
scores such as “little” and “baby” in image II and “top” in

image II. This problem occurred because the vocabulary-critic
is based on n-gram frequency of the ground-truth captions.
For example, in the output captions of images II “little” and
“baby” are next to “a”, so the vocabulary-critic may give the
word w a positive score if w has the form {..., “a”, w, ...} in
the ground-truth captions.

VI. CONCLUSION

We present a method for training image captioning models
called Vocabulary-Critical Sequence Training (VCST). A score
is assigned to every word in the vocabulary at every step during
training. Combined with the other RL methods, the proposed
method can significantly improve the performance of image
captioning models. Note that VCST is not limited to image
captioning task. It has potential to be applied to other sequence
generation tasks such as video captioning and neural machine
translation.

APPENDIX A
FAST CALCULATION OF BLEU

BLEU is an important metric in NLP which is widely used
in sequence generation tasks like NMT and image captioning.
There are two factors in the BLEU metric, length factor A
and frequency factor B. Let s∗ = {w∗1 , ..., w∗T+1} denote
the generated sequence of a image, and Ξ = {ξ1, ..., ξm}
denote the ground truth captions set, where ξj is the j-th
ground truth. sum(x) denotes the element-sum of a vector
x, min and max(x,y) denotes the element maximun and
minimum of two vectors x and y, respectively.

Let ξ∗ be the ground truth caption in Ξ with the most similar
length to s∗. The length factor A is computed as

A(l(s∗)) =

{
1 l(s∗) > l(ξ∗)

e1− l(ξ
∗)

l(s∗) l(s∗) ≤ l(ξ∗).
(26)

For each n, Pn is a modified n-gram precision score such that

Pn(s∗) =
sum(min(hn(s∗),maxj(h

n(ξj))))

sum(hn(s∗))
. (27)
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The frequency factor B is the geometric average of
{P 1, ..., Pn} such that

B(s∗) = (

N∏
n=1

Pn(s∗))
1
N , (28)

and the BLEUN score is the product of these two factors:

BLEUN (s∗|Ξ) = A(l(s∗))B(s∗). (29)

In our experiments about BLEU, we used BLEU-4 in which
N = 4. Note that BLEU involves O(L) computations where
L is the length of the ground-truth captions.

Consider replacing w∗t with w′t in the sequence
s∗ at time step t. We denote sw∗t→w′t =
{w∗1 , ..., w∗t−1, w

′
t, w
∗
t+1, ..., w

∗
T+1} as the sequence

after the replacement. As illustrated in Sec. 3.2, the
replacement involves the changes of 2 n-grams such that
x′t = {w∗t−n+1, ..., w

∗
t−1, w

′
t} and x∗t = {w∗t−n+1, ..., w

∗
t }. It

is clear that sum(hn(s∗w∗t→w′t
)) = T − n + 1. According to

(27), the precision Pn after the replacement is

Pn(s∗w∗t→w′t) = Pn(s∗) +
u(x′t, x

∗
t |s∗w∗t→w′t)− u(x′t, x

∗
t |s∗)

T − n+ 1
,

(30)
where

u(x1, x2|s) = min(hn(x1|s),max
j

(hn(x1|ξj)))

+ min(hn(x2|s),max
j

(hn(x2|ξj))).
(31)

It is clear that u(x′t, x
∗
t |s∗w∗t→w′t) and u(x′t, x

∗
t |s∗) only involve

O(1) multiplications and additions.
With (30), the BLEU score after the replacement is

BLEUN (s∗w∗t→w′t) = A(l(s∗))(

N∏
n=1

Pn(s∗w∗t→w′t))
1
N , (32)

and the reward is

rt(w
′
t|s∗) = BLEUN (s∗w∗t→w′t)− BLEUN (s∗). (33)

The reward only involves O(1) multiplications and additions
according to (30)-(32), and this computing is very efficient
with O(1) time complexity.

By this way, it takes only one full BLEUN computing, one
BLEUN gradient computing, and another O(|Ω|L) multipli-
cations and additions to evaluate all words in the vocabulary
at all time steps.
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