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Abstract

We propose an unsupervised method for 3D object seg-
mentation and motion/content disentanglement of unla-
belled RGB-D video streams. We isolate the independently-
moving foreground under an arbitrary moving camera, split
it into trackable components, and track each component in
3D, across partial and full occlusions. The method works
by estimating optical flow and egomotion, then iteratively
learning 2D and 3D object detectors, and building a mo-
tion prior; together these modules form a high-precision
tracker. Learning happens in an expectation-maximization
framework, where in the expectation step we fire all mod-
ules and look for agreement among them, and in the maxi-
mization step we re-train the modules to improve this agree-
ment. This iterative process gradually expands recall, until
the entire video is explained by tracklets. The constraint
of ensemble agreement helps combat contamination of the
generated pseudo-labels (during the E step), and standard
data augmentation techniques help the modules generalize
to yet-unlabelled data (during the M step). We compare
against existing unsupervised object discovery and tracking
methods, using challenging real-world videos from CATER
and KITTI, and show strong improvements over the state-
of-the-art.

1. Introduction

Humans can detect moving objects and delineate their
approximate extent in 3D from a single and possibly mov-
ing viewpoint [42, 9], and without ever been supplied 3D
boxes or 3D segmentation masks as supervision, whether
in their lifespans or their evolutionary history. How does
this remarkable ability develop without supervision? Neu-
roscience and psychology literature points to a variety of
perceptual grouping cues, which makes some regions look
more object-like than others [19]. These types of object-

ness cues have long been known in computer vision litera-
ture [1], yet this domain knowledge not yet led to powerful
self-supervised object detectors.

Work on integrating perceptual grouping cues into com-
puter vision models stretches back decades, and is still
likely serves as inspiration for many of the design deci-
sions in modern computer vision architectures related to at-
tention, metric learning, two-stream architectures, and so
on. Much of the current work on object recognition and
tracking is fully-supervised, and relies on vast pools of
human-provided annotations. On the unsupervised side,
a variety of deep learning-based methods have been pro-
posed, which hinge on reconstruction objectives and object-
centric or scene-centric bottlenecks in the architecture [6].
These methods are rapidly advancing, but so far only on toy
worlds, made up of simple 2D or 3D shapes against sim-
ple backgrounds – a far cry from the complexity tackled in
older works [15].

Classic methods of object discovery, such as center-
surround saliency in color or flow [2], are known to be
brittle, but they need not be discarded entirely. We sug-
gest to mine and exploit the admittedly rare success sce-
narios of these models, to bootstrap the learning of some-
thing more general. We hypothesize that if the successful
vs. unsuccessful runs of the classic algorithms can be read-
ily identified with automatic techniques, then we can self-
supervisedly train a learning-based module to mimic and
outperform the traditional method. This is a kind of knowl-
edge distillation [22], from traditional models to deep ones.

Our optimization algorithm is essentially expectation
maximization. After identifying the successful outcomes
of a traditional object discovery method, we optimize the
parameters of a learning-based method to make those suc-
cesses more likely. We then use the combination of the tra-
ditional and learned methods to obtain new high-confidence
estimates, and repeat. Our method outperforms not only the
traditional methods, which only work under specific condi-
tions, but also the deep methods, which currently only work
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in toy environments. We demonstrate success in a popu-
lar synthetic environment where recent deep models have
already been deployed, and also on the real-world KITTI
urban scenes benchmark, where the existing deep models
fall flat.

Our main contribution is not in any particular com-
ponent, but rather in their combination. We demon-
strate that by exploiting the successful outcomes of simple
handcrafted detectors and trackers, we can train a robust
learning-based method to detect and track objects in an un-
labelled target domain, without requiring any human anno-
tations.

2. Related Work
Object discovery Many recent works have proposed deep
neural networks for object discovery. These models typi-
cally have an object-centric bottleneck, and are tasked with
a reconstruction objective. MONet [6], Slot attention [32],
IODINE [20] , SCALOR [25], AIR [13], and AlignNet [10]
fall under this category. These methods have been demon-
strated successful in a variety of simple domains, but have
not yet been tested on real-world videos. In this paper we
use the publicly available code for a subset of these mod-
els and evaluate whether they are still able to perform well
under the complexities of real-world imagery. Compared to
our method, these baselines do not make use of depth, but
in the supplementary file we show that concatenating depth
to their input stream provides very little impact on perfor-
mance.

Ensemble methods Using an ensemble is a well-known
way to improve the performance of a machine learning al-
gorithm. Assuming that each member of the ensemble is
prone to different types of errors, the combination of them is
likely to make fewer errors than any individual component
[11]. Ensembling is also the key idea behind knowledge
distillation, where knowledge gets transferred from cumber-
some models to simpler ones [22, 38]. The typical modern
setup is to make up the ensemble out of multiple copies of
a neural network, which are trained from different random
initializations and therefore still have different parameters
after convergence. In our case, the ensemble is more di-
verse: it is made up of components which solve different
tasks, but which can still be checked against one another
for consistency. For example, we learn a 2D pixel labeller
which operates on RGB images, and a 3D object detector
which operates on voxelized pointclouds. When the 3D de-
tections are projected into the image, we expect them to land
on “object” pixels.

Never ending learning We take inspiration from the
methods described in “never ending learning” [7]. We set

up a version of this in an expectation-maximization frame-
work, where in the expectation step we fire all modules and
look for agreement among them, and in the maximization
step we re-train the modules to improve this agreement. A
critical idea from that line of work is to check for high-
confidence estimates from a single module, or medium-
confidence estimates from multiple modules, in order to
mitigate the contamination of pseudolabels across multiple
rounds of learning.

Structure-from-Motion/SLAM Early works on struc-
ture from motion (SfM) [44, 8] set the ambitious goal of ex-
tracting unscaled 3D scene pointclouds and camera 3D tra-
jectories from 2D pixel trajectories, exploiting the reduced
rank of the 2D trajectory matrix under rigid motions. Un-
fortunately, these methods are often confined to very simple
videos, due to their difficulty handling camera motion de-
generacies, non rigid object motion, or frequent occlusions,
which cause 2D trajectories to be short in length. Simul-
taneous Localization And Mapping (SLAM) methods opti-
mize the camera poses in every frame as well as the 3D co-
ordinates of points in the scene online and in real time, and
assume a calibrated setup, i.e., that the focal length of the
camera is known [40, 27]. Our model exploits the rare suc-
cesses of these methods to learn about the static vs. moving
part of the scene.

Moving object estimation Most motion segmentation
methods cluster 2D optical flow vectors to segment moving
objects. While earlier approaches attempted motion seg-
mentation completely unsupervised by integrating motion
information over time through 2D pixel flow trajectories
[4, 35], recent works focus on learning to segment 2D ob-
jects in videos, supervised by annotated video benchmarks
[3, 23, 37, 29, 14, 28].

3. Track, Check, Repeat
Our method takes as input a video with RGB and depth

(either a depthmap or a pointcloud) and camera intrinsics,
and produces as output a 3D detector and 3D tracker for
salient objects in the video.

We treat this data as a test set, in the sense that we do not
use any annotations. In the current literature, most machine
learning methods have a training phase and a test phase,
where the model is “frozen” when the test phase arrives.
Our method instead attempts to optimize its parameters for
the test domain, using “free” supervision that it automati-
cally generates (without any human intervention).

The optimization operates in “rounds”. The first round
leverages optical flow and cycle-consistency constraints to
discover a small number of clearly-moving objects in the
videos. The most confident object proposals are upgraded
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Unexplained 

Explained

t=0 t=1 t=2
split off bkg. split off obj1. split off obj2. …stop

Figure 1. Incrementally explaining an RGB-D video. As input, our method consumes an RGB-D video, or alternatively, a set of RGB-D
videos from a single test domain. This data is considered to be entirely “unexplained” at the start. This sequence is then “explained” in
stages, which proceed from the most prominent moving components, which “pop out” due to motion saliency against the background,
down to the less-prominent components which need to be discovered from appearance cues. Optimization proceeds in an expectation-
maximization framework, where the parts of the scene that are already “explained” become pseudolabels for the next stage, which optimizes
the parameters to explain more confidently with more modules, and generalize to the unexplained regions of the data.

into pseudolabels for training appearance-based object de-
tectors. The second round leverages optical flow and the
new objectness detectors to find more high-confidence pro-
posals, which again lead to additional training. In the final
round we use the detectors as trackers, and use these to gen-
erate a library of trajectories, capturing a motion prior for
objects in the domain.

A critical piece in each stage is the “check”, which de-
cides whether or not to promote an estimate into a pseudola-
bel for the next round. We now describe each piece of the
method, along with its corresponding check.

3.1. Optical flow estimation

Optical flow indicates a 2D motion field that corresponds
the pixels of a pair of images. We use flow (in combination
with other cues) as a signal for objectness, and also as a
submodule of egomotion estimation.

As a starting point, we use an off-the-shelf pre-trained
convolutional optical flow network [43]. This model is
trained with synthetic data, but we note that optical flow
can be learned entirely unsupervised [46].

We finetune this model with three self-supervision tech-
niques. First, we use traditional edge-aware motion smooth-
ness and brightness constancy [46]:

L(w; It, It+1) = `photometric (w; It, It+1) + λ`smoothness (w),
(1)

where {It, It+1} are temporally consecutive images, w ∈
RH×W×2 is the optical flow, and λ is the parameter that
weighs the relative importance of the smoothness. The pho-

tometric loss is computed by

`photometric (w; It, It+1) =
∑
i,j

ρD (It − It+1(p + w)) ,

(2)
where ρD is the robust generalized Charbonnier penalty
function ρ(x) = (x2 + ε2)α to mitigate the effects of out-
liers. The smoothness loss is computed by

`smoothess (w) =
H∑
j

W∑
i

[ρS (ui,j − ui+1,j) + ρS (ui,j − ui,j+1)

+ρS (vi,j − vi+1,j) + ρS (vi,j − vi,j+1)] ,
(3)

where ui,j , vi,j are horizontal and vertical components at
(i, j) of w, respectively, and ρs(·) is the spatial smooth-
ness penalty function realized by the generalized Charbon-
nier function.

Second, we make a copy of the model and freeze it, to
act as a “teacher” for another copy. From flows estimated by
the teacher, we compute a mask indicating which flows are
forward-backward consistent [45, 36, 41]. To do this, we
first generate the forward flow wt→t+1 and the backward
flow wt+1→t, and then warp the backward flow into the
coordinates of the first image:

ŵt→t+1 = wt+1→t (p + wt→t+1(p)) . (4)

A pixel p is considered to be forward-backward consistent
if it satisfies

|wt→t+1 + ŵt→t+1|2 < α1

(
|wt→t+1|2 + |ŵt→t+1|2

)
+α2,

(5)
where we use α1 = 0.05 and α2 = 0.5 in our experiments.
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This is a well-known “check” for optical flow – if flow
is not cycle-consistent, it is not likely to be correct. We
supervise the student model to mimic the teacher model at
the pixels that are cycle-consistent. This helps ensure that
the student model does not get worse than the teacher during
optimization.

The third technique, inspired by the recent SelFlow
method [31], is to apply random synthetic occlusions on the
“student” model’s input. Synthetic augmentations on the
student, while self-supervising via the teacher, forces the
student model to learn a more robust flow estimator than
the teacher.

3.2. Egomotion estimation

Egomotion is the rigid motion of the camera (i.e., trans-
formation of poses) across a pair of frames. Estimating ego-
motion allows us to better estimate which pixels are moving
due to the camera’s motion, and which are moving indepen-
dently. Pixels moving independently are a strong cue for
objectness.

We begin by “upgrading” the (dense) 2D flow fields into
a sparse 3D pointcloud flow. To do this, we project the two
pointclouds that correspond to the image pair, to obtain the
nearest pixel coordinate of each 3D point. We then simply
gather the flows whose startpoint and endpoint both have a
corresponding 3D point, and use the 3D delta of these points
as the pointcloud flow.

We then use RANSAC to estimate the 6-degrees-of-
freedom rigid motion that explains the maximal number of
point flows. RANSAC is intended to be robust to outliers,
but the answer returned is often catastrophically wrong, due
either to correspondence errors or moving objects.

The critical third step is to “check” the RANSAC output
with a freely-available signal. The inlier count itself is such
a signal, but this demands carefully tuning the threshold for
inlier counting. Instead, we enforce cycle-consistency, sim-
ilar to flow. We estimate the rigid motion twice: once using
the forward flow, and once using the backward flow (which
delivers an estimate of the inverse transform, or backward
egomotion). We then measure the inconsistency of these re-
sults, by applying the forward and backward motion to the
same pointcloud, and measuring the displacement:

XY Z ′0 = RT bw10 RT
fw
01 (XY Z0) (6)

err = max
n

(||XY Z ′0 −XY Z0||), (7)

where RT fw01 denotes the rotation and translation com-
puted from forward flow, which carries the pointcloud from
timestep 0 to timestep 1, and RT bw10 is the backward coun-
terpart.

If the maximum displacement across the entire point-
cloud is below a threshold (set to 0.25 meters), then we treat

the estimate as “correct”. In practice we find that this occurs
about 10% of the time in the KITTI dataset.

On these successful runs, we use the egomotion to cre-
ate another 3D flow field (in addition to the one produced
by upgrading the optical flow to 3D), and we subtract these
to obtain the camera-independent motion field. Indepen-
dently moving objects produce high-magnitude regions in
the egomotion-stabilized motion field, which is an excel-
lent cue for objectness. An example of this is shown in
Figure 2-d: note that although some real objects are high-
lighted by this field, some spurious background elements
are highlighted also.

In the first “round” of optimization, we proceed di-
rectly from this stage to pseudo-label generation. From the
pseudo-labels, we then train the parameters of two object
detectors, described next.

3.3. 2D objectness segmentation

This module takes an RGB image as input, and produces
a binary map as output. The intent of the binary map is
to estimate the likelihood that a pixel belongs to a moving
object. This module transfers knowledge from the motion-
based estimators into the domain of appearance, since it
learns to mimic pseudolabels that were generated from mo-
tion alone. This is an important aspect of the overall model,
since it allows us to identify objects from of the “moving”
type even when they are stationary.

We use a 50-layer ResNet [21] with a feature pyramid
neck [30] as the architecture, and train the last layer with a
logistic loss against sparse pseudo-ground-truth:

Lseg =
∑

m̂ log(1 + exp(−ŝ · s)), (8)

wherem is a mask indicating where the supervision is valid.
We experimented with and without ImageNet pretraining
for the ResNet, and found that the pretrained version con-
verges more quickly but is not very different in perfor-
mance.

In training this module with sparse labels, it is critical
to add heavy augmentations to the input, so that it does not
simply memorize a mapping from the happenstance appear-
ance to the sparse objectness labels. We use random color
jittering, random translation and scaling, and random syn-
thetic occlusions.

3.4. 3D object detection

This module takes as input a voxelized colorized point-
cloud (computed from the RGB-D and intrinsics), and esti-
mates oriented 3D bounding boxes of objects.

We use 3D U-Net-style convolutional encoder [39], and
a CenterNet-style detection head [12]. The head produces
a set of heatmaps, which encode objectness (in 1 channel),
3D size (in 3 channels), 3D subvoxel offset (in 3 channels),
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(h) Box fitting,
center-surround

(a) Input RGBD frames (b) Optical flow, 
egomotion flow

(c) Egomotion-
stabilized 3D motion 

field

(d) Visibility map

(e) Unprojected 2D 
object segmentation

(f) 3D objectness 
heatmap

(g) Combined signal

Figure 2. Expectation (E) step of our unsupervised object discovery pipeline. Given an input video (a), we have multiple sources of
evidence, including flow difference (b), visibility ray casting (d), 2D segmentation (e) and objectness score from the previous round (f).
Each of them can be error-prone, but combining them (g) gives us high confidence object labels (h).

and orientation along the vertical axis (encoded as a cate-
gorical distribution over 16 channels). For implementation
details we refer the reader to the supplementary file, and the
original 2D CenterNet paper [12].

In training this module, we find that color augmenta-
tions have little effect, but randomized pointcloud orienta-
tion (when creating the voxelized input) is critical for learn-
ing an even distribution over possible object orientations.
Additionally, we create partial occlusion augmentations, by
randomly erasing an 20×20 area around the object center in
the RGB image, along with the 3D points that project into
that area, while ensuring the target is not fully occluded.

3.5. Short-range tracking

To relocate a detected object over short time periods, we
use two simple techniques: nearest neighbor box associ-
ation, and cross correlation with a rigid template [33]. We
find that the nearest neighbor tracker is sufficient in CATER,
where the motions are relatively slow. In KITTI, due to the
fast motions of the objects and the additional camera mo-
tion, we find that cross-correlation is more effective. We

do this using the features provided by the backbone of the
object detector. We simply create a template by encoding
a crop around the object, and then use this template for
3D cross correlation against features produced in nearby
frames. We find that this is a surprisingly effective tracker
despite not handling rotations, likely because the objects
do not undergo large rotations under short timescales. To
track for longer periods and across occlusions, we make
use of motion priors represented in a library of previously-
observed motions, described next.

3.6. Long-range tracking, with trajectory libraries

To track objects over longer time periods, we build and
use a library of motion trajectories, to act as a motion prior.
We build the library out of the successful outcomes of short-
range tracker, which typically correspond to “easy” tracking
cases, such as close-range objects will full visibility. The
key insight here is that a motion prior built from “good visi-
bility” tracklets is just as applicable to “poor visibility track-
lets”, since visibility is not a factor in objects’ motion.

To verify tracklets and upgrade them into library entries,
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we check if they agree with the per-timestep cues, pro-
vided by flow, 2D segmentation, 3D object detection, and
a visibility map computed by raycasting on the pointcloud.
Specifically, we ask that a tracklet (1) obey the flow field,
and (2) travel through area that is either object-like or in-
visible. For flow agreement, we simply project the 3D ob-
ject motion to 2D and measure the inconsistency with the
2D flow in the projected region. To ensure that the trajec-
tory travels through object-like territory, we create a spa-
tiotemporal volume of objectness/visiblity cues, and trilin-
early sample in that volume along the estimated trajectory.
Each temporal slice of the volume is given by:

p = max(unproj(s) · o+ (1.0− v), 1), (9)

where unproj(s) is the 2D segmentation map unprojected to
3D (Figure 2-d), o is the 3D heatmap delivered by the object
detector (Figure 2-f), and v is the visibility map computed
through raycasting (Figure 2-d). In other words, we require
that both the 2D and 3D objectness signals agree on the ob-
ject’s presence, or the object is in an occluded area. To eval-
uate a trajectory’s likelihood, we simply take the mean of its
values in the spatiotemporal volume, and we set a stringent
threshold (0.99) to prevent erroneous tracklets from enter-
ing the library.

Once the library is built, we use it to link detections
across partial and full occlusions (where flow-based and
correlation-based tracking fails). Specifically, we orient the
library to the initial motion of an object, and then evaluate
the likelihood of all paths in the library, via the cost volume.
This is similar to a recent approach for motion planning for
self-driving vehicles [47], but here the set of possible tra-
jectories is generated from data rather than handcrafted.

3.7. Pseudo-label generation

Pseudo-label generation is what takes the model from
one round of optimization to the next. The intent is to select
the object proposals that are likely to be correct, and treat
them as ground truth for training future modules.

We take inspiration from never-ending learning architec-
tures [34], which promote an estimate into a label only if (i)
at least one module produces exceedingly-high confidence
in the estimate, or (ii) multiple modules have reasonably-
high confidence in the estimate.

The 2D and 3D modules directly produce objectness
confidences, but the motion cues need to be converted into
an objectness cue. Our strategy is inspired by classic liter-
ature on motion saliency [24]: (1) compute the magnitude
of the egomotion-stabilized 3D motion field, (2) threshold
it at a value (to mark regions with motion larger than some
speed), (3) find connected components in that binary map
(to obtain discrete regions), and (4) evaluate the center-
surround saliency of each region. Specifically, we com-
pute histograms of the motion inside the region and in the

surrounding shell, compute the chi-square distance between
the distributions, and threshold on this value [2]:

cs(θ) = χ2(h(cenθ(∆XY Z)), h(surrθ(∆XY Z))), (10)

where θ denotes the region being evaluated, cenθ and surrθ
select points within and surrounding the region, h computes
a histogram, and ∆XY Z denotes the egomotion-stabilized
3D motion field.

When the trained objectness detectors are available (i.e.,
on rounds after the first), we convert the rigid motion
field into a heatmap with exp(−λ||∆XY Z||), and add this
heatmap to the ones produced by the 2D and 3D objectness
estimators, and then proceed with thresholding, connected
components, and box fitting as normal. The only difference
is that we use a threshold that demands multiple modules
to agree: since each module produces confidences in [0, 1],
setting the threshold to any value above 2 effectively en-
forces this constraint.

4. Experiments
We test our model in the following datasets:

1. Synthetic RGB-D videos of tabletop scene rendered
with CATER [18]. CATER is a built upon CLEVR
[26], and it focuses on testing the model’s ability to do
long term temporal reasoning. We modified the simu-
lator so that it can generate pointclouds, but leave all
other rendering parameters untouched. The max num-
ber of object is set to 10 to make the scene as complex
as possible. Videos are captured by 6 virtual camera
set static around the scene.

2. Real RGB-D videos of urban scenes, from the KITTI
dataset [17]. This data was collected with a sensor
platform mounted on a moving vehicle, with a human
driver navigating through a variety of areas in Ger-
many. The data provides multiple RGB images; we
use the “left” color camera. The dataset provides depth
in the form of LiDAR sweeps synced to the RGB im-
ages. We use the “tracking” subset of KITTI, which
includes 3D object labels, and approximate (but rel-
atively inaccurate) egomotion provided by an inertial
measurement unit.

In all datasets, we test on 50-frame videos. We evaluate all
models on their ability to discover objects in 3D. For our
model and the traditional baseline, we additionally evaluate
tracking performance.

4.1. Baselines

We evaluate the following unsupervised object discovery
baselines. We also tested the baselines for unsupervised ob-
ject tracking, but their performance is poor on both datasets,
so we include the results in supplementary materials.
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Figure 3. 3D object detections in CATER (left) and KITTI (right). Ground-truth boxes are shown in beige and detection results are
shown in blue. IoU scores are marked alongside each boxes. Results are shown in perspective RGB and bird’s-eye view.
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Figure 4. 3D object tracking IoU over time, in CATER and
KITTI. Tracking precision necessarily begins near 1.0 because
tracking is initialized with a real object box in frame0, and declines
over time, more drastically in KITTI than in CATER.

• Object-Centric Learning with Slot Attention [32].
The Slot Attention model trains an autoencoder with
image reconstruction loss. An iterative attention-based
update mechanism is applied when constructing the
slots, which act as a representational bottleneck.

• MONet [6]. MONet applies an recurrent attention
mechanism that tries to explain the scene part by part.
A VAE is also trained to reconstruct the image. Since
there is no official code released, we re-implemented
using PyTorch.

• Discontinuities Tracing [5]. This method first extract
dense point trajectories using optical flow. Video seg-
mentation is then performed by detecting discontinu-
ities of embedding density. We also tested a more naive
approach Spectral Clustering [16] which the Discon-
tinuities Tracing improved upon.

4.2. Quantitative Results

Object Discovery Our main evaluation is in Table 4.1,
where we evaluate the object proposal accuracy in mean Av-
erage Precision (mAP) at different IoU thresholds, on both
CATER and KITTI. The metrics are collected in Bird’s-eye
view of the 3D boxes (BEV) and in 2D projections (2D).
We find that our model produces the most accurate bound-
ing boxes, in nearly all metrics. Adding another round of
EM improves the precision at the higher IoU thresholds.

Interestingly, the baseline methods that achieve state-of-the-
art results in synthetic datasets have near zero accuracy in
KITTI, probably because their unsupervised learning objec-
tives are not powerful enough to produce meaningful de-
composition of complex scenes.

Object Tracking Object tracking accuracy (in IoU over
time) is shown in Table 4. To evaluate tracking, we ini-
tialize the correlation tracker with the bounding box of the
object to track. No ego-motion information is used during
testing. Our methods can maintain relatively high IoU over
long time horizons. The IoU at frame19 is 0.34 in KITTI
and 0.7 in CATER.

Ablation on the trajectory library Table 4.2 shows an
ablation study on the trajectory library. We report “Recall”,
which we define as the proportion of objects that are suc-
cessfully tracked by our model from the beginning of the
video to the end, where tracking success is defined by an
IoU threshold of 0.5. We also report “Precision”, which we
define as the proportion of tracklets that begin and end on
the same object. With the trajectory library, we improve
the recall from 53% to 64%, while precision drops slightly
from 94% to 91%. Qualitatively we find that the majority
of improvement is on partially and fully-occluded objects,
where strict appearance-based matching is ambiguous and
prone to failure, but where the library is a useful prior.

We present the remainder of the quantitative results in
the supplementary, showing that the tracking performance
of our model outperforms the baseline, and showing that
ablating components of our model decreases performance.

4.3. Qualitative Results

For object discovery, We show object proposals of our
model in CATER and KITTI in 3. Ground-truth boxes are
shown in beige and proposed boxes are shown in blue. Their
IoU are marked near the boxes. Results are shown on RGB
image as well as bird’s-eye view. The boxes have high re-
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Method Dataset mAP@X
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Slot Attention [32] CATER (2D) 0.63 0.51 0.43 0.34 0.22 0.1 0.05
KITTI (2D) 0.07 0.03 0.01 0 0 0 0

MONet [6] CATER (2D) 0.23 0.14 0.12 0.10 0.07 0.03 0.01
KITTI (2D) 0.03 0.01 0 0 0 0 0

Spectral Clustering [5] CATER (2D) 0.18 0.08 0.04 0.03 0.01 0 0
KITTI (2D) 0.01 0 0 0 0 0 0

Discontinuity
Aware Clustering [16]

CATER (2D) 0.17 0.08 0.04 0.02 0.01 0.01 0
KITTI (2D) 0.01 0 0 0 0 0 0

Ours
(Round1)

CATER (2D) 0.98 0.97 0.97 0.94 0.86 0.7 0.36
KITTI (2D) 0.53 0.39 0.18 0.06 0.03 0.01 0.01
CATER (BEV) 0.97 0.92 0.75 0.57 0.34 0.06 0
KITTI (BEV) 0.46 0.42 0.06 0 0 0 0

Ours
(Round2)

CATER (2D) 0.98 0.97 0.96 0.94 0.88 0.69 0.33
KITTI (2D) 0.43 0.40 0.39 0.33 0.30 0.22 0.10
CATER (BEV) 0.97 0.95 0.84 0.66 0.46 0.08 0
KITTI (BEV) 0.41 0.39 0.35 0.31 0.28 0.11 0.02

Ours
(Round3)

CATER (2D) 0.98 0.98 0.97 0.95 0.88 0.71 0.34
KITTI (2D) 0.43 0.4 0.37 0.35 0.33 0.3 0.21
CATER (BEV) 0.98 0.97 0.9 0.76 0.46 0.1 0.02
KITTI (BEV) 0.4 0.38 0.35 0.33 0.31 0.23 0.06

Table 1. Comparison of our method to baselines on the Object Discovery task. Results are reported as mean average precision (mAP) at
several IoU threshols. Our method works best in all the metrics reported. 2D means perspective view and BEV means bird’s-eye view.

Method Recall Precision
Ours, with short-range tracker 0.53 0.94
. . . and trajectory library 0.64 0.91

Table 2. Ablations of the trajectory library, in CATER.

call and high precision overall; it can detect small objects
as well as separate the object that are spatially close to each
other. In KITTI, there are some false positive results on
bushes and trees because of the lack of pseudo-label super-
vision there.

We visualize object tracklets in KITTI in Figure 5, but
we encourage the reader to inspect the supplementary video
for clearer visualizations of the tracking performance.

4.4. Limitations

The proposed method has two main limitations. Firstly,
our work assumes access to RGB-D data with accurate
depth, which excludes the method from application to gen-
eral videos (e.g., from YouTube). Second, it is unclear how
best to mine for negatives. Right now we use a small region
around each pseudo label as negative (i.e., “not a moving
object”), but it leaves the method prone to false positives in
far-away non-objects like bushes and trees.

Figure 5. 3D object tracking in KITTI. Ground-truth boxes are
shown in beige and detection results are shown in blue. IoU scores
are marked alongside each box. The two columns show two dif-
ferent video sequences. Objects frequently undergo partial occlu-
sions and truncation in KITTI.

5. Conclusion
We propose an unsupervised method that learns by

segmenting motions of unlabelled RGB-D video streams.
Learning and improvement is achieved in an expectation-
maximization framework. In the expectation step we take

8



the high confidence agreement among individual modules
to create pseodo labels, and in the maximization step we re-
train the modules. Standard data augmentation techniques
are used to improve the generalization ability of the model.
We showed that our method achieves state-of-the-art ob-
ject discovery and tracking accuracy on two challenging
datasets, and we further show that our method can address
occlusions. Our approach opens new avenues for learning
object models from videos in arbitrary environments, with-
out requiring explicit object supervision. Extending our
method to handle deformable and articulating motion is a
useful avenue for future work.
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